首页> 外文OA文献 >Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
【2h】

Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques

机译:利用数字滤波技术识别线性和非线性气动脉冲响应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
机译:本文讨论了线性和非线性气动脉冲响应函数的数学存在和数值正确的识别。将详细介绍连续时间系统理论和离散时间系统理论之间的差异,这些差异允许识别和有效使用这些功能。还将讨论重要的输入/输出定义以及带有存储器的线性和非线性系统的概念。结果表明,可以从以下公式获得独立的(阶跃或稳态)响应(例如Wagner函数),强制谐波响应(例如Theodorsen函数或来自双峰晶格理论的响应)以及对随机输入的响应(例如阵风)。气动脉冲响应函数。本文将空气动力学脉冲响应函数确定为最基本的,因此也是计算效率最高的空气动力学函数,可以从任何给定的离散时间空气动力学系统中提取该函数。本文提出的结果有助于将对经典二维连续时间理论的理解与现代三维离散时间理论统一起来。首先,将该方法应用于非线性粘性伯格斯方程。接下来,将该方法应用于使用CAP-TSD(计算气动弹性程序-跨音速小扰动)代码的三维气动弹性模型,然后应用于使用CFL3D Navier-Stokes代码的二维模型。提出了准确性和节省计算成本的比较。由于其数学上的通用性,此方法的一个重要属性是它适用于各种非线性离散时间问题。

著录项

  • 作者

    Silva, Walter A.;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号